Biography
Matthew Howland is a Ph.D. Candidate in the University of California, San Diego Anthropology Department. Matt entered the department in 2012, after receiving a B.S. degree in Archaeological Science and a B.A. degree in Classics and Ancient Mediterranean Studies from the Pennsylvania State University in 2012. He also received his M.A. in anthropology from the University of California, San Diego in 2014.

He is an archaeologist whose current work focuses on southern Jordan's Faynan region during the early Iron Age period (ca. 1200-900 BCE), primarily at the copper producing site Khirbat al-Jariya. His interests include the role of trade and long-distance exchange in the development of social complexity, ceramic technology, and the economic lives of ordinary people in the past. In order to investigate these issues, Matthew applies ceramic petrography, spatial analysis in GIS, and 3D modelling with photogrammetry.

Project Summary
This project is a comprehensive study of archaeological ceramics recovered from an Iron Age copper production site, Khirbat al-Jariya (KAJ), in southern Jordan’s Faynan region. The project is intended to examine the role of trade and long-distance exchange in the development of social complexity, facets of the copper production industry in Iron Age Faynan which have been relatively understudied. This research will be some of the first research based in Faynan to investigate the ultimate destination of copper produced in the region, a major historical question which has not been sufficiently addressed through study of local material. Though ca. 130,000 tons of copper slag are estimated to have been produced in the period, the post-production exchange routes through which copper moved are largely unknown due to the lack of copper artifacts sourced to Faynan and a prior research focus in Faynan on technology and industrial production rather than trade. My project aims to rectify these gaps in research with a multi-faceted study of pottery from KAJ. The first part of the project involves recording ceramic sherds in 3D with the goal of preserving their original form and appearance against the planned destructive sampling. The second part of the project involves taking a representative sample of the KAJ assemblage for petrographic study. Finally, the third part of the project will involve chemical analysis of a subsample of the sherds, in order to both corroborate the mineralogical composition of the sherds and also provide more detailed analysis on specific elements of each ceramic’s fabric.